Learning music similarity from relative user ratings

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Music Similarity Modelling Using Transfer Learning Across User Groups

We introduce a new application of transfer learning for training and comparing music similarity models based on relative user data: The proposed Relative Information-Theoretic Metric Learning (RITML) algorithm adapts a Mahalanobis distance using an iterative application of the ITML algorithm, thereby extending it to relative similarity data. RITML supports transfer learning by training models w...

متن کامل

PredictingTrust from User Ratings

Trust relationships between users in various online communities are notoriously hard to model for computer scientists. It can be easily verified that trying to infer trust based on the social network alone is often inefficient. Therefore, the avenue we explore is applying Data Mining algorithms to unearth latent relationships and patterns from background data. In this paper, we focus on a case ...

متن کامل

Combining Sources of Description for Approximating Music Similarity Ratings

In this paper, we compare the effectiveness of basic acoustic features and genre annotations when adapting a music similarity model to user ratings. We use the Metric Learning to Rank algorithm to learn a Mahalanobis metric from comparative similarity ratings in in the MagnaTagATune database. Using common formats for feature data, our approach can easily be transferred to other existing databas...

متن کامل

Adapting Metrics for Music Similarity Using Comparative Ratings

Understanding how we relate and compare pieces of music has been a topic of great interest in musicology as well as for business applications, such as music recommender systems. The way music is compared seems to vary among both individuals and cultures. Adapting a generic model to user ratings is useful for personalisation and can help to better understand such differences. This paper presents...

متن کامل

Online Multitask Relative Similarity Learning

Relative similarity learning (RSL) aims to learn similarity functions from data with relative constraints. Most previous algorithms developed for RSL are batch-based learning approaches which suffer from poor scalability when dealing with realworld data arriving sequentially. These methods are often designed to learn a single similarity function for a specific task. Therefore, they may be sub-o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information Retrieval

سال: 2013

ISSN: 1386-4564,1573-7659

DOI: 10.1007/s10791-013-9229-0